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Abstract

The likelihood function of LSSMs is invariant under a group of parameter transformations

associated to affine transformations of the state vector. Thus, certain parameters are not

identified. Identification is usually obtained through normalization: one restricts attention to

a particular parameter subspace in order to ensure that parameter point estimators are well

defined. Normalizing LSSMs in empirical work has more influence on statistical inference than

is commonly appreciated as the invariance property of the likelihood function has at least three

implications for Bayesian inference. First, certain parameters have no substantive interpreta-

tion. Specifying prior beliefs on such quantities is, at best, conceptually difficult to justify.

Second, the affine group provides a natural structure for augmenting the parameter space and

improving the numerical efficiency of posterior sampling. Finally, if certain parameter ele-

ments are close to being unidentified empirically, the parameter posterior can be multimodal

or have extremely large high-order moments, which complicates its interpretation. I propose

invariant prior distributions for the parameters of LSSMs that ensure that predictive densities

do not depend on parameterization choice. I also present a structural parameter expansion

data augmentation (SPX-DA) algorithm for computing the parameter posterior in a simple

and efficient manner. Using artificial data, I show how one popular normalization can define

an almost invariant parameter posterior when a model is empirically underidentified.
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1. Introduction

Let yt be a N -dimensional vector of observables at time t and ξt a K-dimensional vector of

unobserved state variables. A Markovian Gaussian linear state-space model (LSSM) is defined

by the system of equations

ξt = E+ Fξt−1 + vt, (1)

yt = B+Hξt +wt, (2)

where vt and wt are independent Gaussian white noises with covariance matrices Q and R,

respectively. Let also Σ = (I ⊗ I − F⊗ F)−1 vec (Q) denote the covariance matrix of ξt.

Equation (1) is referred to as the state equation and equation (2) as the observation equation.

State variables are also known as factors and H as the matrix of factor loadings. Factor

analysis corresponds to the case E = 0 and F = 0, and structural vector autoregressions

correspond to the case E = 0 and R = 0 with K = N . I use the generic notation p to denote

a density function. The function’s support is indicated as a subscript when this precision is

required. For instance, pΘ (θ) is a density function with respect to a measure ν on Θ.

The likelihood function of LSSMs is invariant under the group of affine transformations of

the latent variables. If L denotes the space of K-dimensional vectors and G denotes the space

of K×K invertible matrices, the system (1-2) can be written in terms of the transformed state

variable ηt = Gξt + L for any (L,G) ∈ L × G and the log-likelihood function satisfies1

l (ML,G (B,H,R,E,F,Q)|y) = l (B,H,R,E,F,Q|y) , (3)

where

ML,G (B,H,R,E,F,Q)

=
(

B−HG−1L,HG−1,R,GE+
(

I −GFG−1
)

L,GFG−1,GQG⊤
)

(4)

and y = (y1, . . . ,yT ). For future reference, the Jacobian of this transformation is JML,G
=

1The density function of the initial state vector, ξ1, must satisfy p (Gξ1 + L|ML,G (B,H,R,E,F,Q)) =

p (ξ1|B,H,R,E,F,Q). Certain candidate densities are presented in Section 3.
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det (G)K+2−N . The solution to the likelihood-maximization problem is thus not unique. Non-

identification is typically broken through normalization: one restricts attention to a particular

parameter subspace in order to ensure that parameter point estimators are well defined. A

normalization is thus a parameter subspace, say ΘN ⊆ Θ, that is not observationally restric-

tive, meaning that it does not contain any information about the observables. In particular,

for every θ ∈ Θ there exists a θ′ ∈ ΘN such that p (y| θ) = p (y| θ′). For instance, under

one popular normalization (Harvey, 1989; Geweke and Zhou, 1996), the system (1-2) can be

equivalently written as

ζt = 0+ F̃ζt−1 + ṽt, (5)

yt = B̃+ H̃ζt +wt. (6)

where H̃ is N×K matrix with H̃n,k = 0 for k > n and H̃n,k > 0 for k = n, and Cov [ṽt] = I,
a K×K identity matrix.

Let θ = {B,H,R,E,F,Q} and Θ denote the unnormalized parameter space. The normal-

ized system (5-6) results from imposing normalization

Θ̃ = {θ ∈ Θ|E = 0;Hn,k = 0 for k > n;Hn,k > 0 for k = n;Q = I} (7)

on the system (1-2). I use the generic notation ΘN =
{

(θ1, θ2)
∣

∣ (θ1, θ2) ∈ Θ = ΘN
1 ×ΘN

2 ; θ2 = θ̄2
}

.

For a normalization ΘN the transformation (4) implicitly defines a function MΘN : ΘN
1 ×L×

G → Θ. The unnormalized parameter space Θ can thus be generated by any normalization

and the affine group. In that sense, (1-2) is the structural overparameterization of a LSSM

that is induced by the invariance property of its likelihood function. For Θ̃, the transformation

is

MΘ̃

(

B̃, H̃,R, F̃,L,G
)

=
(

B̃− H̃G−1L, H̃G−1,R,
(

I −GF̃G−1
)

L,GF̃G−1,GG⊤
)

. (8)

Where it is well defined2, its inverse M−1

Θ̃
: Θ → Θ̃1×L×G does not have a closed-form solution

2The parameter subspace on which the inverse is not well defined is a property of a normalization that

influences the shape of the parameter posterior. This relationship is examined in more detail in Section 2.2
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but it can be implemented with standard matrix decomposition routines. The expressions

normalization and parameterization are sometimes used interchangeably because there is often

a natural parameterization associated to a particular normalization. For instance, E and Q

are not parameters under (7). In this paper, a change in parameterization always results from

a change in normalization and this should not be a source of confusion3.

One standard way of normalizing a model is restricting the support of the parameter

prior. For example, one would approximate the parameter posterior under Θ̃ by generating

a sample from pΘ̃

(

B̃, H̃,R, F̃
∣

∣

∣
y
)

∝ p
(

y

∣

∣

∣
B̃, H̃,R, F̃

)

pΘ̃

(

B̃, H̃,R, F̃
)

. Alternatively, nor-

malization can be operationalized as a mapping (McCulloch and Rossi, 1994; Stephens, 1997;

Frühwirth-Schnatter, 2001), that is by generating a sample from pΘ (B,H,R,E,F,Q|y) ∝
p (y|B,H,R,E,F,Q) pΘ (B,H,R,E,F,Q) and computing

(

B̃, H̃,R, F̃,L,G
)

= M−1

Θ̃
(B,H,R,E,F,Q).

Both approaches to normalization are inferentially valid, but they define the same parameter

posterior only if

pΘ̃

(

B̃, H̃,R, F̃
)

=

∫

L×G

pΘ

(

MΘ̃

(

B̃, H̃,R, F̃,L,G
))

∣

∣JMΘ̃

∣

∣ ν (dL dG) ,

where JMΘ̃
denotes the Jacobian of the transformation (8). Therefore, parameter priors can

be chosen so that both approaches define the same parameter posterior. The main contribu-

tion of this paper is showing that operationalizing normalization as a mapping is simpler to

implement and numerically more efficient than restricting the parameter prior’s support, for

any normalization.

Outline

The invariance property of the likelihood function influences statistical inference in at least

three ways, which are the subject of the next three sections. First, normalization determines

the shape of the parameter posterior and thus its interpretation. The influence of normal-

3A simple example of reparameterization that involves more than restricting the parameter space is modeling

a standard deviation as δ = ln (σ). I do not consider this type of reparameterization in this paper.
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ization on finite-sample parameter inference has been documented in a number of settings4.

Normalization does not merely ensure that parameter estimators are well defined, it also has

broader implications for inference for it defines the sampling distribution of the parameter

MLE and the parameter posterior. In general, Hamilton, Waggoner, and Zha (2007) state

that “poor normalizations can lead to multimodal distributions, disjoint confidence intervals,

and very misleading characterizations of the true statistical uncertainty.” Such problems arise

when a model is empirically underidentified (or locally almost unidentified or weakly iden-

tified). The first expression was introduced by Kenny (1979), which he defines as “zero or

near-zero denominators in the estimates of structural parameters.” Dufour and Hsiao (2008)

define weak identification in the following terms: “More generally, any situation where a pa-

rameter may be difficult to determine because we are close to a case where a parameter ceases

to be identifiable may be called weak identification.” In this paper, I adopt a definition similar

to Dufour’s (1997) definition of a locally almost unidentified model and I say that a parametric

model is empirically underidentified by a data sample if the likelihood-maximizing parameter

value is close, in terms of statistical uncertainty, to the parameter subspace where the model is

unidentified. Thus, empirical underidentification is a joint property of both the (normalized)

model and the data sample. In Section 2, I show how the influence of normalization on the

parameter posterior in LSSMs is related to inefficient normalization of invariance under certain

subgroups of the affine group. In particular, I explain how one popular normalization could

define a parameter posterior that is multimodal, almost rotation invariant, or even almost

improper.

Second, invariance has consequences for prior specification. LSSMs can be interpreted

as hierarchical models in which the parameter elements governing the dynamics of the state

vector are hyperparameters. Hyperparameters are often modeled with noninformative pri-

4For instance, Hillier (1990) and Millsap (2001) examine the influence of normalization in structural equation

models. McMillin (2001) and Rubio-Ramı̀rez, Waggoner, and Zha (2010) consider structural vector autoregres-

sions. See Koop, Strachan, van Dijk, and Villani (2006) for a recent discussion of the influence of normalization

on inference in cointegrated models.
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ors, because of either convenience or a lack of prior information (Hobert and Casella, 1996),

although this is not standard practice for the hyperparameters of LSSMs. Prior specifi-

cation can adversely interact with normalization and distort inferences about parameters

(Hamilton, Waggoner, and Zha, 2007). This interaction can also have material consequences

for model selection (Frühwirth-Schnatter and Lopes, 2010; Frühwirth-Schnatter and Wagner,

2010). Such difficulties arise if p (y) is not independent of normalization choice. They are

avoided if the following condition is satisfied for every pair of normalizations (Θ1,Θ2):
∫

Θ1

p (y| θ) pΘ (θ) ν (dθ) =

∫

Θ2

p (y| θ) pΘ (θ) ν (dθ) , (9)

where pΘ (θ) is a density with respect to a measure ν on Θ. Requiring that normalization

contains no information about the observables thus severely constrains prior specification. In

Section 3, I propose invariant parameter priors that do not express prior beliefs over the relative

plausibility of observationally equivalent parameter values. These priors satisfy (9) and ensure

that statistical inference is not unduly influenced by normalization.

Normalization also affects the computational efficiency of a data augmentation (DA) al-

gorithm for LSSMs (Pitt and Shephard, 1999; Papaspiliopoulos, Roberts, and Sköld, 2003).

However, the question of which parameterization performs best has been somewhat subsided

by recent techniques that do not rest on the choice of one particular parameterization (See

Papaspiliopoulos, Roberts, and Sköld, 2007, for a discussion.). For instance, Yu and Meng

(2011) propose an interweaving strategy (IS) that combines two parameterizations within a

single sweep of a Gibbs sampler. In a nutshell, their algorithm is assimilable to a reversible

Gibbs sampler (Robert and Casella, 2004, algorithm A.41) with a symmetric scan under differ-

ent parameterizations. Alternatively, Liu and Wu (1999) propose a parameter expansion DA

(PX-DA) algorithm. They augment the parameter space with an artificial expansion parameter

α such that
∫

p (y, ζ | θ, α) dζ = p (y| θ) for the purpose of improving the mixing properties of

the DA algorithm (See Meng and van Dyk, 1999; Liu and Wu, 1999, for related approaches.).

IS and PX-DA perform impressively well for one-factor LSSMs, but implementation is dif-

6



ficult when K > 1 and K 6= N5. State-space models have a structural interpretation that

provides a basis for augmenting the parameter space in a more natural manner than the arti-

ficial overparameterization of PX-DA. Respecting the likelihood function’s structure simplifies

implementation. If drawing from a conditional parameter posterior with a support that is

restricted by an identifying restriction can be challenging from an analytical or computational

point of view, removing that restriction often simplifies this task dramatically6. For instance,

McCulloch and Rossi (1994) invoke such arguments for motivating a structural overparameter-

ization of the multinomial probit model in which the matrix of regression coefficients and the

error covariance matrix are not restricted. Structural overparameterization is thus motivated

by analytical or computational convenience rather than numerical efficiency. In Section 4, I

propose an implementation of the DA algorithm for the structural overparameterization (1-2)

of a LSSM. This structural parameter expansion DA (SPX-DA) algorithm converges at least as

fast a standard DA algorithm under any normalization ΘN ⊆ Θ. In addition to its numerical

efficiency, one key advantage of the SPX-DA algorithm is that it can be easily implemented

under any normalization.

Section 5 presents empirical evidence on the numerical efficiency of the SPX-DA algorithm

for artificial and real data. In section 6, I illustrate the influence of normalization on the shape

of the parameter posterior. I also show that one popular normalization can define an almost

invariant parameter posterior and I propose a novel normalization that defines a parameter

posterior with more desirable properties.

Elements of group theory

I conclude this introduction with a brief presentation of certain elementary definitions and

results from group theory (See Eaton, 1989, for a detailed presentation of group invariance

5Simpson, Niemi, and Roy (2017) consider an application of IS in which H and F are considered known

parameters.
6Ruud (1991) remarks that structural overparameterization can simplify implementation of the EM algo-

rithm by replacing certain constrained optimization problems with unconstrained ones.
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applications in statistics.). A group is a nonempty set Γ, together with an associative binary

operation, that (a) is closed under that operation, (b) has an identity element, and (c) in

which every element has an inverse in Γ. The affine group is closed under the operation

(L1,G1) (L2,G2) = (G1L2 + L1,G1G2), the identity transformation is (0, I), and (L,G)−1 =

(−G−1L,G−1).

For an element ω ∈ Γ and a measurable subset Ω ⊆ Γ, the notation ωΩ ⊆ Γ denotes the

subset resulting from the left-action of ω on every element of Ω through the group’s operation.

A measure µl satisfying
∫

Ω
µl (dγ) =

∫

ωΩ
µl (dγ) is a left Haar measure on Γ. It is unique up to

a multiplicative constant. A right Haar µr measure is defined similarly. If Γ is commutative

or compact, µl = µr and the Haar measure is said to be unimodular. One important result is

that a Haar measure is finite (µ (Γ) < ∞) if and only if Γ is compact. A Haar measure on a

compact group can therefore be normalized to be a probability measure. Grossly speaking, a

Haar measure can be assimilated to a uniform or noninformative measure on Γ. The left Haar

measure on the affine group is proportional to |det (G)|K+1.

A parameter subspace in which elements are observationally equivalent to one another can

be described by a group of transformations, which can be constructed as follows. For a given

group Γ, a function f : Γ×Θ → Θ satisfying (a) f (e, θ) = θ, for all θ ∈ Θ and where e is the

identity element of Γ; and (b) f (γ1γ2, θ) = f (γ1, f (γ2, θ)), for all γ1, γ2 ∈ Γ and θ ∈ Θ is said to

specify Γ acting on the left of Θ. For each γ ∈ Γ, define the transformation Mγ (θ) = f (γ, θ).

Then MΓ (Θ) = {Mγ | γ ∈ Γ} is a group under function composition. The notation MΓ (Θ)

makes dependence on the space Θ explicit: MΓ (Θ) is a group of transformations on Θ onto

Θ. I will omit this dependence and write MΓ when this causes no confusion. Notice that the

commutativity, compactness and countability of MΓ correspond to those of Γ.

A function ψ (θ) is invariant under MΓ (Θ) if ψ (θ) = ψ (Mγ (θ)) for all θ ∈ Θ and all Mγ ∈
MΓ (Θ) (Eaton, 1989, definition 2.4). I will say that a statistical model is invariant under MΓ

if its likelihood function is invariant under that group, implying that Mγ (θ) observationally

equivalent to θ. LSSMs are invariant underML×G (Θ) = {ML,G (B,H,R,E,F,Q)| (L,G) ∈ L × G}.
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Finally, a density function p (θ) (which might not be proper) is invariant under MΓ (Θ) if

p (Mγ (θ))
∣

∣JMγ

∣

∣ = p (θ), for all Mγ ∈ MΓ (Θ), where JMγ
is the Jacobian of Mγ evaluated at

θ.

2. Empirical underidentification

Empirical underidentification has severe consequences for maximum-likelihood inference,

which Dufour and Hsiao (2008) summarize thus:

“...standard asymptotic distributional may remain valid, but they constitute very

bad approximations to what happens in finite samples:

1. standard consistent estimators of structural parameters can be heavily bi-

ased and follow distributions whose form is far from the limiting Gaussian

distribution, such as bimodal distributions, even with fairly large samples

(Nelson and Startz, 1990; Hillier, 1990; Buse, 1992);

2. standard tests and confidence sets, such as Wald-type procedures based on

estimated standard errors, become highly unreliable or completely invalid

(Dufour, 1997)”

Empirical underidentification has consequences for Bayesian inference as well. In particular,

the parameter posterior can be multimodal and credibility regions can be disjoint. In such

situations, a parameter point estimator is an inappropriate summary of the parameter posterior

distribution for most purposes. Computing a credibility interval as the region between two

posterior quantiles is similarly misleading.

As there are many ways to normalizing any given model, it is natural to ask if certain

normalizations define parameter posteriors with more desirable properties than alternatives.

Symmetric, unimodal parameter posteriors facilitate communication of empirical results for in-

stance. Hamilton, Waggoner, and Zha (2007) propose a theoretical framework for guiding the
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choice of normalization according to an identification principle7. In some models, this principle

yields a unique normalization that defines a unimodal parameter posterior. In LSSMs with

more than two state variables, it is less straightforward to apply. Although it usefully defines a

preorder on normalizations by ruling out uncountably many poor normalizations, it falls short

of recommending a unique optimal normalization. Moreover, it does not guarantee that any

particular normalization defines a unimodal parameter posterior. The practical guidance that

the identification principle offers is thus incomplete and comparing several normalizations is

recommended in empirical work (Frühwirth-Schnatter, 2001; Hamilton et al., 2007). In this

section, I show how decomposing the affine group into subgroups and operationalizing nor-

malization as a mapping help to understand the influence of normalization on the parameter

posterior’s shape.

2.1. Decomposing the affine group

If the likelihood function and the parameter prior are invariant under a group of transforma-

tions, inefficient normalization defines an almost invariant parameter posterior. The practical

implications for the shape of the posterior depend on two properties of the group: countabil-

ity8 and compactness. Thus, decomposing the affine group into subgroups will prove useful

for better understanding how normalization determines the shape of the parameter posterior.

As a first step, one can decompose an affine transformation into a translation, (L, I) ξ =

ξ + L and a linear transformation (0,G) ξ = Gξ. Finding useful subgroups of the linear

group is accomplished by the use of three standard decompositions of square matrices. The

QR decomposition factorizes a square matrix X = UT into the product of an orthogonal

matrix U and a upper-triangular matrix T. A matrix is orthogonal if its transpose is equal

to its inverse. The group of orthogonal matrices, denoted by U , is known as the orthogonal

7The framework of Hamilton, Waggoner, and Zha (2007) is presented and extended in Appendix A.
8Although every example of a countable group in this paper is finite, countability rather than finiteness is

the relevant property. An example of an infinitely countable group is that of translating an angle ρ ∈ ℜ by a

multiple of 2π.
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group. Orthogonal matrices are sometimes referred to as rotation matrices, but rotation

matrices (which I denote by O ∈ O) are more properly defined as orthogonal matrices with

a determinant equal to 1, i.e. O = {O ∈ U| det (O) = 1}. Two subgroups of the orthogonal

group that are not subgroups of the rotation group are the permutation and the reflection

groups. Permutation matrices (which I denote by P ∈ P) are obtained by permuting the

rows of an identity matrix and satisfy P = P−1. Reflections matrices are diagonal matrices

(denoted by S ∈ S) with diagonal elements equal to 1 or −1 and satisfy S = S⊤ = S−1. The

QR decomposition of a real square matrix X always exists and it is unique if X is invertible and

if the diagonal elements of T are positive. In other words, if X is invertible, the decomposition

is unique up to reflection because UT =
(

US⊤
)

(ST) as US⊤ ∈ U and ST is upper triangular.

The singular value decomposition factorizes a symmetric positive definite matrix Σ =

UDU⊤ as the product of an orthogonal matrix and a scaling matrix D. The group of scaling

transformations is the group of diagonal, positive-definite matrices, which I denote by D. The

decomposition always exists. It is unique up to reflection and permutation because it satisfies

UDU⊤ = US⊤
(

SDS⊤
)

SU⊤ and UDU⊤ = UP⊤
(

PDP⊤
)

PU⊤ as SDS⊤,PDP⊤ ∈ D and

UP⊤ ∈ U . Finally, the Cholesky decomposition factorizes a symmetric positive definite matrix

as Σ = T⊤T. It always exists and it is unique up to reflection because T⊤T =
(

T⊤S⊤
)

(ST).

The likelihood function of LSSMs is invariant under the translation, scaling, rotation, per-

mutation and reflection groups. The reflection, permutation and rotation groups are subgroups

of the orthogonal group, which is compact. In contrast, the translation and scaling groups are

not compact. Because a proper parameter posterior cannot be invariant under a group that

is not compact, inefficient normalization of translation and scale invariance can have severe

consequences: the parameter posterior could be almost improper. This relationship between

normalization compactness and posterior propriety is related to the demonstration of Dufour

(1997) that, in a classical setting, no valid confidence set which is almost surely bounded does

exist for an empirically underidentified parameter with an unbounded range. An example of

an almost improper parameter posterior on Θ̃ will be presented in Section 6.2.
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Inefficient normalization of invariance under a compact group has consequences as well.

The permutation and reflection subgroups are countable: M0,S and M0,P respectively contain

2K and K! transformations. For example, the likelihood function of a LSSM with K = 3

latent variables has 48 equivalent lobes. Inefficient normalization of reflection and permutation

invariance can thus define a multimodal parameter posterior. Inefficient normalization of

invariance under rotation can result in a parameter posterior that exhibits a circular shape.

Section 6.1 presents an example of a parameter posterior that is almost invariant under the

reflection, permutation and rotation groups.

2.2. Operationalizing normalization as a mapping

In addition to being a central building block of the SPX-DA algorithm, operationalizing

normalization as a mapping is useful for practical and theoretical reasons. From a practical

perspective, it can be used for reparameterizing a model by postprocessing a posterior sam-

ple. This allows the investigator to analyze the influence of an alternative normalization on

the posterior posterior at very little computational cost when empirical underidentification

difficulties are suspected. It also simplifies the implementation of certain normalizations. For

example, in order to implement a DA algorithm under the restriction that H⊤H is a diagonal

matrix, one would have to parameterize H in terms of a (N − 1)×K lower triangular matrix

of angles φ (Heiss and Sannino, 1990; Heiss, 1994) as

H = C1C2 . . .CKW,

where

Ck = ρk,k+1ρk,k+2 . . . ρk,N ,

W(N×K) = [ I0 ] ,

ρi,j =

[ I
cos φi,j − sinφi,j

I
sinφi,j cos φi,j

I

]

(N×N)

,

and specify prior information about φ. Operationalizing this normalization as a restriction

of the posterior’s support requires additional programming and foregoing the convenience of

standard distributions. In contrast, operationalizing it as a mapping requires little analytical,
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programming or computational effort (Kaufmann and Schumacher, 2013).

From a theoretical point of view, the properties of the mapping MΘN are informative about

the influence of ΘN on the shape of the parameter posterior. In particular, ΘN performs

inefficiently in a neighborhood of the parameter subspace on which M−1
ΘN does not exist. An

example best illustrates how the properties of the mapping influence statistical inference. The

popular normalization (7) can be written as

Θ̃ = ΘE ∩ΘQI ∩ΘH△ ∩ΘHd1 ,

where

ΘE = {θ ∈ Θ|E = 0} , (10)

ΘQI = {θ ∈ Θ|Q = I} , (11)

ΘH△ =
{

θ ∈ Θ
∣

∣

∣
H̃n,k = 0, k > n

}

, (12)

ΘHd1 =
{

θ ∈ Θ
∣

∣

∣
H̃n,k > 0, k = n

}

. (13)

In order to operationalize Θ̃ as a mapping, one computes the inverse of (8). In practice, this is

accomplished by finding the functions L : Θ → L and G : Θ → G such that ML(θ),G(θ) (θ) ∈ Θ̃

for all θ ∈ Θ. From (4), L (θ) is given by the solution of 0 = GE + (I −GFG−1)L, which

is L (θ) = G (F− I)−1
E. Substituting this solution into (4) reveals the consequences of

inefficient normalization of translation invariance for the shape of the parameter posterior:

B̃ = B + H (I − F)−1
E can take extremely large values if I − F is close to being singular.

Clearly, (8) is not onto Θ because the inverse of I − F does not exist everywhere on Θ. In

empirical work, p
(

B̃

∣

∣

∣
y
)

could have very fat tails. Heuristically, (10) performs inefficiently

because the unconditional expectation of the state vector, E [ξt] = (I − F)−1
E, does not exit if

I−F is singular. If the state vector is not stationary, the model is translation invariant even if

E is restricted to being equal to a constant vector. This argument is holds independently of the

manner that normalization is operationalized. However, it seems likely that operationalizing

normalization as a mapping will facilitate exploration of the posterior’s fat tails. I present a

simulation experiment that supports this intuition in Section 6.2.
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The function G (θ), implicitly defined by the conditions (11-13), does not have a closed-

form expression. But it can be computed using standard matrix decomposition routines. If

H1:K,1:K denotes the first K×K block of H, one finds the function G (θ) by computing9 the QR

decomposition UT1 = H⊤
1:K,1:K, the Cholesky decomposition T2T

⊤
2 = U⊤QU and the product

G1 = T⊤
2
−1
U⊤. The Cholesky decomposition ofU⊤QU and the QR decomposition ofH1:K,1:K

are defined up to reflection. Therefore, imposing (11-12) preserves reflection invariance10. One

imposes (13) by finding the reflection matrix S such that the diagonal elements ofH1:K,1:KG
−1
1 S

are positive. Thus, the solution is G = SG1.

The QR decomposition of H⊤
1:K,1:K is not unique if H1:K,1:K is not invertible. In that case,

(11-12) does not break permutation and rotation invariance. The model is locally unidentified

on the parameter subspace where H1:K,1:K is not invertible and the parameter posterior is al-

most rotation invariant if the likelihood-maximizing value of H1:K,1:K is close to being singular.

This possibility is illustrated with artificial data in Section 6.1. In this example, normalization

fails to break permutation and rotation invariance because then chosen block of H does not

have full rank (Geweke and Singleton, 1980), which can result from modeling too many fac-

tors (Lopes and West, 2004). In empirical work, the investigator might try several other blocks

(Carvalho et al., 2008; Frühwirth-Schnatter and Lopes, 2010) of H if he suspects that the first

block is rank-deficient or select K rows of H following an ad hoc procedure (Forni et al., 2000).

A more robust normalization might be desirable however. In the empirical section of this paper

I break rotation invariance by imposing ΘQD ∩ΘξI , where

ΘQD = {θ ∈ Θ|Q ∈ D} , (14)

ΘξI = {θ ∈ Θ|Σ = I} , (15)

9An alternative—computing the Cholesky decomposition T1T
⊤

1 = Q, the QR decomposition UT2 =

T⊤

1 H
⊤

1:K,1:K , and the product G1 = U⊤T1
−1—defines the same mapping.

10Implementations of the QR and Cholesky decompositions typically do not preserve reflection invariance and

produce only one of the 2K solutions. One of these solutions should be selected randomly for operationalizing

normalization as a mapping. Similarly, typical implementations of the singular value decomposition produce

only one of the K!2K solutions.
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and Σ is the unconditional covariance matrix of the state vector. In this parameter subspace

the state vector is unconditionally uncorrelated and has unitary unconditional variance. State

innovations are uncorrelated as well. This normalization thus gives simple interpretation to

the matrix of factor loadings. It also has advantage that one does not have to arbitrarily

choose a particular block of H. Like (11-12), (14-15) preserves reflection invariance, but it

preserves permutation invariance too. Permutation normalization can thus be chosen freely.

Notice that if the elements of H are a priori uncorrelated they will be so a posteriori as well

if (15) is imposed and if R is proportional to an identity matrix. Reflection and permutation

normalization based on elements of H is then often straightforward, as is illustrated in Section

6.1.

3. Prior specification

It is conceptually inconsistent to express prior beliefs over the relative plausibility of obser-

vationally equivalent parameter values. For finite mixture distributions, Geweke (2007) argues

that “If the state labels have no substantive interpretation, then the prior density must also be

permutation invariant.” Indeed, specifying prior beliefs on quantities that have no substantive

interpretation is, at best, conceptually difficult to justify. Prior information should reflect the

invariance property of the likelihood function. If the likelihood function is invariant under

a group of transformations, the prior density should be invariant under that group as well.

Invariant priors are noninformative about dimensions that have no substantive interpretation.

This ensures that that (9) is satisfied and that inference for invariant quantities is not influ-

enced by normalization. If the likelihood function and the parameter prior are invariant, so is

the parameter posterior. If the parameter posterior is invariant, predictive densities are not

influenced by normalization.

Specifying a proper prior density that is noninformative about observationally equivalent

parameter values is possible only if MΓ is a compact group. Therefore, there exists no proper

invariant prior under the affine group. A prior (on Θ) that is invariant under an affine trans-
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formation of the state variables must satisfy

pΘ (ML,G (B,H,R,E,F,Q)) |det (G)|K+2−N = pΘ (B,H,R,E,F,Q) . (16)

For example, a prior proportional to

pQΘ (B,H,R,E,F,Q) = p (R) det (Q)−
1−N+(K+1)

2 (17)

is invariant under affine transformation of the state variables, for any marginal density p (R).

Conditionally on the state variable, the posterior of Q is an inverse Wishart distribution with

T −N degrees of freedom. There exists other invariant priors. A prior proportional to

pHΘ (B,H,R,E,F,Q) = p (R)
∣

∣det
(

H⊤H
)
∣

∣

1−N+(K+1)
(18)

will be useful when Q is not a parameter element of the model. For example, one can obtain

an invariant prior on Θ̃ by computing the density of M−1

Θ̃
(B,H,R,E,F,Q), the inverse of

(8), as I do in Section 4.2.

Invariance criteria have been used for obtaining noninformative parameter prior distribu-

tions11 and other definitions of invariance can be found in the literature. Berger (1985) and

Eaton (1989), for instance, define invariance in terms of groups of transformations on the sam-

ple space. Alternatively, George and McCulloch (1993) refer to the latter concept as sample

space invariance and they define parametrization invariance in terms of invertible parameter

transformations. They show how a sample-space invariant or a parameterization invariant

prior can be constructed through the choice of a discrepancy measure. A parameterization

invariant prior can also be specified through the choice of a group of transformations. This

approach can be criticized on the basis that the group can be chosen in several ways. A

prior density satisfying (16) is a parameterization invariant prior where the group of parame-

ter transformations is induced by the invariance property of the likelihood function. In that

sense, the choice of the transformation group is not arbitrary12.

11See George and McCulloch (1993) and Kass and Wasserman (1996), for a discussion and

Bayarri, Berger, Forte, and Garćıa-Donato (2012), for an application to model choice.
12Writing the system (1-2) in terms of the alternative transformed state variable υt = G (ξt + L) implies

that an invariant prior must satisfy (16) as well.
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I will refer to p (ξ1) as a prior density even if ξ1 is not an element of the model’s parameter.

The likelihood function of a LSSM satisfies (3) only if p (Gξ + L|ML,G (B,H,R,E,F,Q)) =

p (ξ|B,H,R,E,F,Q). There are at least three ways of specifying p (ξ1) so that this conditions

holds. A first possibility is specifying an hierarchical prior and treating its hyperparameters as

elements of the model’s parameter. For instance, if ones specifies a multivariate normal density

with hyperparameters µξ1 and Σξ1 then the model’s parameter is {B,H,R,E,F,Q, µξ1,Σξ1},
the density satisfies p (Gξ1 + L|Gµξ1 + L,GΣξ1G) = p (ξ1|µξ1,Σξ1) , and a prior propor-

tional to p (R) det (Q)−
2−N+2(K+1)

2 is invariant. Notice that (3) is not satisfied if p (ξ1) is

a multivariate normal density with fixed parameters. Another possibility is assuming sta-

tionarity and specifying a normal prior with mean and variance equal to (I − F)−1
E and

(I ⊗ I − F⊗ F)−1 vec (Q), which does not involve additional parameter elements. A third

possibility is specifying a flat prior on the initial state vector.

Computational or other considerations might lead one to specifying diffuse condition-

ally conjugate priors. But doing so can have severe consequences for parameter estimation

and model selection because conditionally conjugate priors do not satisfy (9). For example,

Hamilton et al. (2007) warn that prior specification can adversely interact with normalization

and distort inferences about parameters. In particular, they show how specifying a diffuse nor-

mal prior for the location parameters of a mixture of two normal distributions can lead to severe

bias in parameter estimation; the more diffuse the prior, the larger the bias. Carvalho et al.

(2008) remark that the ordering of the observed variable is an important modeling decision

under Θ̃ for model selection. In order to make statistical inference independent of the or-

dering choice, Frühwirth-Schnatter and Lopes (2010) and Kaufmann and Schumacher (2013)

propose methods for specifying priors that respect the invariance of the likelihood function

under orthogonal transformation.

For a dynamic linear trend model, Frühwirth-Schnatter and Wagner (2010) argue that a

normal prior on H̃ is more appropriate for model selection applications than an inverse gamma

prior on Q under an alternative scale normalization. In order to better understand how scale

normalization affects inference with conditionally conjugate priors, consider a simple LSSM
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with N = K = 1. Under the scale normalization that imposes Q = 1, a zero-mean normal

prior on the factor loading, H̃ ∼ N (0, σ2), is conditionally conjugate. This distributional

assumption implies that H̃2 is gamma-distributed, H̃2 ∼ G(1
2
, 2σ). By scale invariance, this

prior is equivalent to Q ∼ G(1
2
, 2σ) under the scale normalization that imposes H = 1, which is

not conditionally conjugate. A standard conditionally conjugate prior for a variance parameter

is an inverse gamma distribution, which attributes much less weight to neighborhoods of zero

than a gamma distribution. Indeed, it is well known that the hyperparameters of the inverse

gamma prior have a strong influence on the posterior of a variance parameter if its value is

close to zero, where the model is locally unidentified.

4. Posterior sampling

In this section I describe the SPX-DA algorithm and I explore its relation to the DA and

PX-DA algorithms13. In particular, I elicit the conditions under which these algorithms define

the same parameter posterior on Θ̃. Then I show that the SPX-DA algorithm corresponds to a

particular implementation of the PX-DA algorithm with certain optimality properties. Using

Θ̃ for this discussion simplifies exposition but is not restrictive, although implementing the

DA and PX-DA algorithms under alternative normalizations could be analytically or compu-

tationally challenging. In contrast, the simplicity and the numerical efficiency of the SPX-DA

algorithm are independent of the particular choice of normalization.

4.1. The posterior sampling algorithms

For (5-6), one simple DA algorithm that operationalizes normalization as a restriction of

the posterior’s support would proceed as follows:

13The posterior samplers that I describe in this section involve a naive accept-reject step that operationalizes

reflection normalization or imposes stationarity. They are not, therefore, pure Gibbs samplers. For notational

clarity however, I omit this dependence on the current state of the Markov chain and I write, for example,

p
Θ̃

(

B̃, H̃,R, F̃
∣

∣

∣
ζ′
)

instead of p
Θ̃

(

B̃, H̃,R, F̃
∣

∣

∣
ζ′, B̃′, H̃′,R′, F̃′

)

.
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DA Algorithm 1.

1. Draw ζ ′ from p
(

ζ
∣

∣

∣
B̃, H̃,R, F̃,y

)

;

2. Draw
(

B̃′, H̃′,R′, F̃′

)

from

pDA

Θ̃

(

B̃, H̃,R, F̃
∣

∣

∣
ζ ′,y

)

∝ p
(

y, ζ ′
∣

∣

∣
B̃, H̃,R, F̃

)

pDA

Θ̃

(

B̃, H̃,R, F̃
)

,

where the support of pDA

Θ̃

(

B̃, H̃,R, F̃
)

is restricted to Θ̃ and ζ = (ζ1, . . . , ζT ). Notice that if

the parameter prior is proportional to

pR
Θ̃
= p (R) , (19)

for any prior conditionally conjugate p (R), the conditional parameter posterior can be factor-

ized as

pDA
Θ̃

(

B̃, H̃,R, F̃
∣

∣

∣
ζ,y

)

= pDA (R| ζ,y) pDA
(

B̃, H̃
∣

∣

∣
R, ζ,y

)

pDA
(

F̃

∣

∣

∣
ζ
)

, (20)

in which each factor is a standard distribution, up to a naive accept-reject step that opera-

tionalizes reflection normalization and imposes stationarity. Without this accept-reject step,

the DA Algorithm 1 would be a two-stage Gibbs sampler.

For a LSSM, ifA is a group and an expansion parameter α ∈ A indexes a differentiable map-

ping Mα (ζ) such that p (y|Mα (ζ) , θ, α) = p (y|Mα (ζ) , θ), PX-DA sampling (Liu and Wu,

1999) could proceed as follows14:

PX-DA Algorithm 2.

1. Draw ζ ′ from p
(

ζ
∣

∣

∣
B̃, H̃,R, F̃,y

)

;

2. Draw
(

B̃′, H̃′,R′, F̃′, α∗
)

from

pPX−DA

Θ̃×A

(

B̃, H̃,R, F̃, α
∣

∣

∣
ζ ′,y

)

∝ p
(

y,Mα (ζ
′)
∣

∣

∣
B̃, H̃,R, F̃

)

|JMα
| pDA

Θ̃

(

B̃, H̃,R, F̃
)

pPX−DA
A

(

α
∣

∣

∣
B̃, H̃,R, F̃

)

,

where JMα
denotes the Jacobian of Mα (ζ) evaluated at ζ and pPX−DA

A

(

α
∣

∣

∣
B̃, H̃,R, F̃

)

is (a)

a proper density function, (b) the improper limit of a sequence of proper priors, or (c) propor-

14In this and the other algorithms described in this paper, starred symbols denote intermediate quantities.
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tional to the left Haar measure on A. If pPX−DA
A

(

α
∣

∣

∣
B̃, H̃,R, F̃

)

= pPX−DA
A (α), Liu and Wu

(1999) show that the PX-DA Algorithm 2 converges as least as fast the DA Algorithm 1. If

pPX−DA
A (α) is proportional to the left Haar measure on A, it converges at least as fast as a

DA algorithm under any normalization ΘN ⊆ Θ̃×A.

The expansion parameter α in PX-DA is not identified by the data, i.e. p (y| θ, α) = p (y| θ).
Identification is generally considered to be a property of the likelihood function that is not

of particular interest to Bayesian econometricians. As long as the parameter posterior is

proper, a Gibbs sampler converges under fairly mild conditions (Roberts and Smith, 1994;

Hobert, Robert, and Goutis, 1997). If the parameter posterior on the unnormalized param-

eter space Θ is proper, it can be recovered by a standard DA algorithm. If a sample from

the parameter posterior on a particular normalized parameter space ΘN is needed, it can be

obtained by operationalizing normalization as a mapping of each element of a sample from the

posterior on Θ to an observationally equivalent parameter value in ΘN . Stephens (1997) and

Frühwirth-Schnatter (2001) use such a strategy for computing the parameter posterior in a

finite mixture of normal distributions, and McCulloch and Rossi (1994) do so in a multinomial

probit model. For finite mixture distributions, this transformation corresponds to permuting

certain elements of the parameter vector and its Jacobian is identically equal to one. If the pa-

rameter prior is invariant under permutation, operationalizing normalization as a mapping is

therefore equivalent to operationalizing it as a restriction of the prior’s support. For the multi-

nomial probit model, the mapping corresponds to scaling certain elements of the parameter

vector by another element. The Jacobian of this transformation is not identically equal to one.

The two approaches to operationalizing normalization are not equivalent and define different

parameter posteriors unless the parameter priors are explicitly chosen for this equivalence to

hold. Clearly, both approaches to normalization are inferentially valid and any difference in

the posterior they define can be attributed to prior specification.

The SPX-DA algorithm takes the unnormalized parameter space, Θ, as an expanded pa-

rameter space. This parameter space is induced by the invariance property of the likelihood

function under ML×G. Because Θ in not compact, the parameter posterior is improper if
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the parameter prior is improper. Thus, p (ξ| θ) is not well defined if the parameter prior is

invariant. After each sweep of the sampler, normalization is operationalized by mapping the

parameter vector to ΘN × L × G so that the conditional posterior of the state vector is well

defined. Under Θ̃, the SPX-DA algorithm proceeds as follows:

SPX-DA Algorithm 3.

1. Draw ξ∗ from p
(

ξ
∣

∣

∣
B̃, H̃,R, 0, F̃, I,y

)

;

2. Draw (B∗,H∗,R∗,E∗,F∗,Q∗) from

pSPX−DA
Θ (B,H,R,E,F,Q| ξ∗,y) ∝ p (y, ξ∗|B,H,R,E,F,Q)

× pSPX−DA
Θ (B,H,R,E,F,Q) ;

3. Compute
(

B̃′, H̃′,R′, F̃′,L∗,G∗

)

= M−1

Θ̃
(B∗,H∗,R∗,E∗,F∗,Q∗),

where M−1

Θ̃
is the inverse of (8). The inverse transformation does not have a explicit solution

but its computation requires only simple linear algebra operations that are described in Section

2.2. Compared to PX-DA and IS, implementing an SPX-DA algorithm is extremely simple

and requires little programming. In particular, if the parameter prior is proportional to (17),

the conditional parameter posterior can be factorized as

pSPX−DA
Θ (B,H,R,E,F,Q| ξ∗,y) = pSPX−DA (R| ξ∗,y) pSPX−DA (B,H|R, ξ∗,y)

× pSPX−DA (Q| ξ∗) pSPX−DA (E,F|Q, ξ∗)

in which each factor is a standard distribution, up to an accept-reject step that operationalize

imposes stationarity. Implementing alternative normalizations, e.g. imposing H⊤H = I or

Cov [ξt] = I, requires only simple algebra.

4.2. Statistical equivalence

In general, the DA Algorithm 1 and SPX-DA Algorithm 3 define different parameter pos-

teriors. Because the likelihood function is invariant under ML×G, any difference can be inter-

preted as the result of different parameter prior specifications. As a consequence, both algo-

rithm define the same posterior for a particular choice of the parameter priors. Liu and Wu
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(1999) show that the DA Algorithm 1 and PX-DA Algorithm 2 define the same parameter

posterior. If the PX-DA Algorithm 2 and SPX-DA Algorithm 3 define the same posterior for

a particular choice of priors, so does the DA Algorithm 1.

For this analysis, I define the expansion α ∈ A so that Θ̃ × A and Θ are equinumerous.

A natural choice is α = (L,G). Let pPX−DA

Θ̃×L×G

(

B̃, H̃,R, F̃,L,G
∣

∣

∣
y
)

denote the parameter

posterior defined by the PX-DA Algorithm 2 corresponding to this choice. As (L,G) is not

identified by the data,

pPX−DA

Θ̃×L×G

(

B̃, H̃,R, F̃,L,G
∣

∣

∣
y
)

= pDA
Θ̃

(

B̃, H̃,R, F̃
∣

∣

∣
y
)

pPX−DA
L×G

(

L,G
∣

∣

∣
B̃, H̃,R, F̃

)

.

The parameter posterior defined by the SPX-DA Algorithm 3 is

pSPX−DA

Θ̃×L×G

(

B̃, H̃,R, F̃,L,G
∣

∣

∣
y
)

= pSPX−DA
Θ

(

MΘ̃

(

B̃, H̃,R, F̃,L,G
)
∣

∣

∣
y
)

∣

∣JMΘ̃

∣

∣

∝ p
(

y

∣

∣

∣
MΘ̃

(

B̃, H̃,R, F̃,L,G
))

pSPX−DA

Θ̃

(

MΘ̃

(

B̃, H̃,R, F̃,L,G
))

∣

∣JMΘ̃

∣

∣ ,

where JMΘ̃
denotes the Jacobian of the transformation (8). IfK=1, JMΘ̃

=det (G)1−N det
(

1− F̃
)

15.

By the invariance property of the likelihood function,

p
(

y

∣

∣

∣
MΘ̃

(

B̃, H̃,R, F̃,L,G
))

= p
(

y

∣

∣

∣
B̃, H̃,R, 0, F̃, I

)

.

Therefore, the PX-DA and SPX-DA algorithms define the same parameter posterior distribu-

tion if

pDA
Θ̃

(

B̃, H̃,R, F̃
)

pPX−DA
L×G

(

L,G
∣

∣

∣
B̃, H̃,R, F̃

)

= pSPX−DA
Θ

(

MΘ̃

(

B̃, H̃,R, F̃,L,G
))

∣

∣JMΘ̃

∣

∣ ,

(21)

or equivalently if

pSPX−DA
Θ (B,H,R,E,F,Q) = pPX−DA

Θ̃×L×G

(

M−1

Θ̃
(B,H,R,E,F,Q)

)
∣

∣

∣
JM−1

Θ̃

∣

∣

∣
. (22)

For example, JM
−1

Θ̃

= det (Q)
N−1

2 det (1− F)−1 if K = 1. If pDA
Θ̃

(

B̃, H̃,R, F̃
)

is proportional

to (19) and pPX−DA
L×G

(

L,G
∣

∣

∣
B̃, H̃,R, F̃

)

∝ |det (G)|2 (i.e. the left Haar measure on the affine

15Computing JM
Θ̃

when K > 1 is complicated by the fact that H̃ has a lower triangular block and that

GG⊤ is a symmetric matrix.
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group when K = 1), specifying a prior proportional to

pSPX−DA
Θ (B,H,R,E,F,Q) = p (R)

∣

∣

∣
det (Q)

N+1
2 det (1− F)−1

∣

∣

∣
(23)

ensures that the SPX-DA algorithm recovers pDA
Θ̃

(

B̃, H̃,R, F̃
∣

∣

∣
y
)

. Using the invariant prior

(18), one can obtain a prior on Θ̃ that is invariant under ML×G. If K=1, specifying a prior

proportional to

pPX−DA

Θ̃×L×G

(

B̃, H̃,R, F̃,L,G
)

= p (R)

∣

∣

∣

∣

det
(

H̃⊤H̃
)3−N

det (G)N−5 det
(

1− F̃
)

∣

∣

∣

∣

(24)

expresses no prior beliefs over the relative plausibility of observationally equivalent parameter

values.

The PX-DA and SPX-DA algorithms define the same parameter posterior if parameter

priors are chosen appropriately. However, pPX−DA

Θ̃×L×G

(

B̃, H̃,R, F̃,L,G
∣

∣

∣
ζ,y

)

is not a stan-

dard distribution if the prior is proportional to (24). Sampling could be implemented by

a Metropolis-Hastings step but numerical efficiency would be impaired. Similarly, sampling

from pSPX−DA
Θ (B,H,R,E,F,Q| ξ,y) is computationally more demanding if the prior is pro-

portional to (23). For this reason, comparing the numerical efficiency of the DA and SPX-DA

algorithm for a particular parameter posterior is futile. In Section 5, I examine the mixing

properties of the DA and SPX-DA algorithms with parameter priors proportional to (19) and

(17), respectively.

Deriving the conditions under which the PX-DA and SPX-DA algorithms define the same

parameter posterior sheds light on one way in which prior specification can distort parameter

inference in LSSMs. Condition (23) implies that an invariant prior attributes a lower prob-

ability to neighborhoods of F̃ = 1 than the flat prior (19). As a consequence, the mode of

the posterior density of F̃ will larger than the maximum-likelihood estimate when the prior is

proportional to (19). An invariant prior, in contrast, does not distort inference in this man-

ner, as is illustrated in Section 6.2. Moreover, because posterior sampling can be numerically

unstable when I − F̃ is close to being singular, specifying a prior proportional to (19) could

impair a posterior sampler’s numerical stability when the observables are highly persistent and

the sample size is relatively small.
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4.3. SPX-DA as an implementation of PX-DA

Defining ML,G (ζ) = G−1 (ζ − L), p
(

y,ML,G (ζ)
∣

∣

∣
B̃, H̃,R, F̃

)

is the density associated to

the system

G−1 (ζt − L) = 0 + F̃G−1 (ζt−1 − L) + ṽt, (25)

yt = B̃+ H̃G−1 (ζt − L) +wt. (26)

The Jacobian of the transformation is det (G)−T and Algorithm 2 can be written as follows:

PX-DA Algorithm 2.1

1. Draw ζ ′ from p
(

ζ
∣

∣

∣
B̃, H̃,R, F̃,y

)

;

2. Draw
(

B̃′, H̃′,R′, F̃′,L∗,G∗

)

from

pPX−DA

Θ̃×L×G

(

B̃, H̃,R, F̃,L,G
∣

∣

∣
ζ ′,y

)

∝ p
(

y,ML,G (ζ ′)
∣

∣

∣
B̃, H̃,R, F̃

)
∣

∣

∣
det (G)−T

∣

∣

∣
pPX−DA

Θ̃×L×G

(

B̃, H̃,R, F̃,L,G
)

.

Drawing from pPX−DA

Θ̃×L×G

(

B̃, H̃,R, F̃,L,G
∣

∣

∣
ζ ′,y

)

can be simplified by writing the system (26-25)

as

ζt =
(

I −GF̃G−1
)

L+GF̃G−1ζt−1 +Gṽt,

yt = B̃− H̃G−1L + H̃G−1ζt +wt

and making the change of variable defined by (8). Doing so produces the following algorithm:

PX-DA Algorithm 2.3.

1. Draw ζ ′ from p
(

ζ
∣

∣

∣
B̃, H̃,R, F̃,y

)

;

2. Draw (B∗,H∗,R∗,E∗,F∗,Q∗) from

pPX−DA
Θ (B,H,R,E,F,Q| ζ ′,y)

∝ p (y, ζ ′|B,H,R,E,F,Q)pPX−DA

Θ̃×L×G

(

M−1

Θ̃
(B,H,R,E,F,Q)

)
∣

∣

∣
JM

−1

Θ̃

∣

∣

∣
.

3. Compute
(

B̃′, H̃′,R′, F̃′,L∗,G∗

)

= M−1

Θ̃
(B∗,H∗,R∗,E∗,F∗,Q∗).

This algorithm is identical to the SPX-DA Algorithm 3 if prior specification satisfies (21) or
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(22). If the prior is proportional to (17),
(

B̃, H̃,R, F̃
)

and (L,G) are a priori independent.

When this is the case, the SPX-DA algorithm corresponds to an implementation of the PX-DA

algorithm in which the invariance property of the likelihood function is exploited for choosing

an expansion scheme with two properties. First, the expanded parameter space respects the

model’s structure and simplifies sampling from the condition parameter posterior. Second,

because Θ corresponds to an expansion of any normalization, it converges at least as fast as

a DA algorithm under any normalization ΘN ⊂ Θ. Liu and Wu (1999) show that the PX-DA

Algorithm 2 converges at least as fast as a DA algorithm under any normalization ΘN ⊆ Θ̃×A
if pPX−DA

A (α) is proportional to the left Haar measure on A. This condition is incompatible

with (16) and it is unnecessary when A = L × G.

5. Numerical efficiency

In this section16, I use artificial as well as real data for analyzing the mixing properties

of the SPX-DA Algorithm 3 with a parameter prior proportional to (17). The mixing prop-

erties of the DA Algorithm 1 with a prior proportional to (19) are presented as a bench-

mark. I use a forward-filtering-backward-simulation (FSBS) algorithm (Carter and Kohn,

1994; Frühwirth-Schnatter, 1994) for drawing the state variables in both algorithms. For

simplicity, I specify a flat prior on ξ1, which requires an information-filtering version of the

algorithm (See Grewal and Andrews, 2008, for an detailed presentation.). More efficient al-

gorithms exist for drawing the state variable (See Kim et al., 1998; McCausland, 2012, for

example), but the results presented in this section suggest that little performance improve-

ment could be obtained by improving the sampling of the state variable.

16Because parameter priors are improper, the method proposed by Geweke (2004) cannot be used for vali-

dating the algorithms implemented in this section. However, they have been thoroughly validated with proper

parameter priors and an alternative blocking scheme. That the algorithms define the same parameter posterior

has been validated as well with priors proportional to (19) and (23).
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5.1. Measuring numerical efficiency

There is no universal definition of numerical efficiency, but it is often presented as a property

of the posterior sampler. Measuring numerical efficiency, by contrast, requires reference to an

inference problem. For instance, efficiency can be defined as the computing time—the number

of iterations times the computing time per iteration—required for estimating a quantity with

a certain precision. The computing time per iteration for the DA and SPX-DA algorithms

is dominated by the drawing of the state variable and are thus almost identical. For MCMC

algorithms, the number of iterations required for estimating a scalar-valued function of the

parameter vector, say h (θ), with a certain precision is influenced by the autocorrelation time

of posterior sample, τ = 1 + 2
∑∞

q=1 ρ (q), where ρ (q) is the autocorrelation of h (θ) at lag q.

For a posterior sample of M iterations, the variance of the posterior mean of h (θ) is equal

to Var(h(θ))
M

× τ . In other words, an MCMC sampler requires a simulation size τ times larger

than an i.i.d. sampler for estimating h (θ) with the same precision. The inefficiency factor of

a quantity is an estimator of its autocorrelation time. In this paper, it is computed as

1 + 2

500
∑

q=1

(

1− q

500

)

ρ̂ (q) , (27)

where ρ̂ (q) is the sample autocorrelation of the quantity at lag q. Parameter inefficiency factors

are relevant measures of numerical efficiency if the inference objective is parameter estimation,

but their usefulness is less apparent for other objectives. For instance, inefficient estimation of

the parameter vector would not be a concern in forecasting applications if predictive densities

were computed efficiently.

In empirically underidentified finite mixture models, Geweke (2007) shows that, contrary

to assessments in earlier literature, a standard DA algorithm could reliably recover the infor-

mational content of the parameter posterior with a reasonable number of iterations. Finite

mixture models are permutation invariant. He stresses the distinction between quantities of

interest that are permutation invariant (e.g. predictions) and those that are not (e.g. certain

component distribution parameters). He finds that, although estimating the latter precisely

can be difficult, estimation of invariant quantities poses no particular problem. In finite mix-
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ture models, a standard DA algorithm’s ability to compute the posterior of invariant quantities

efficiently is not impaired by empirical underidentification. I will assess whether this holds true

in LSSMs as well by computing the inefficiency factors associated to certain invariant quanti-

ties.

5.2. Simulation setup

I use artificial data for examining the performance of the DA and SPX-DA algorithms for

LSSMs. The data is generated as

ζt+1 = 0 + αF

















1

0.751

. . .

0.75K−1

















ζt + ṽt (28)

Yt = 0 +





I
1



 ζt +
√
αRwt, (29)

where ṽt and wt are vectors of independent standard normal variables, 1 is a (N −K)×K
matrix of ones, αF and αR are scalars. In this section, K = 2, N = 4 and T = 200. My results

are based on 50, 000 iterations after a burn-in of 5, 000 iterations.

In an application of IS (Yu and Meng, 2011) to inference in stochastic volatility models,

Kastner and Frühwirth-Schnatter (2014) remark that inefficiency factors may depend sub-

stantially on the actual realization of the artificial data. In order to mitigate the effect of

this variability, they generate several artificial data sets and report the median inefficiency

factor for each parameter element. The sampling distribution of the inefficient factor depends

on the Markov chain’s transition kernel and on the number of iterations. Table 1 gives de-

scriptive statistics of the distribution of the inefficiency factor (27) for a sample of 50,000

observations from a Gaussian first-order auto-regressive process with auto-regressive coeffi-

cient ρ ∈ {0, 0.7, 0.9, 0.99, 1}. For such processes, the autocorrelation time is equal to 1+2 ρ

1−ρ
.

These statistics provide some guidance for appreciating the simulations results reported in

this section. For example, the inefficiency factor lies outside the interval [0.78, 1.23] with a
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statistic

ρ
0 0.7 0.9 0.99 1

mean 0.99 5.58 18.51 158.10 487.77

standard error 0.01 0.06 0.21 1.38 0.72

median 0.99 5.54 18.43 158.00 489.68

skewness 0.31 0.22 0.22 0.04 −1.64

excess kurtosis 0.32 −0.03 0.10 0.05 3.67

95 % prob. interval [0.78, 1.23] [4.38, 6.90] [14.63, 22.79] [130.69, 185.58] [468.68, 496.21]

autocorrelation time 1.00 5.67 19.00 199.00 ∞

Table 1: Descriptive statistics of the sampling distribution of the inefficiency factor (27) for a sample of

50,000 observations from a Gaussian first-order auto-regressive process with auto-regressive coefficient ρ ∈
{0, 0.7, 0.9, 0.99, 1}. Based on 5,000 artificial samples. Standard error is for 101 samples.

probability of 0.05 if the autocorrelation time is equal to one, and the standard error of the

mean over 101 simulations is 0.01.

The model defined by the system (28-29) is globally identified on Θ̃ if αF < 1. As αF

approaches one, B̃ becomes unidentifiable and the model becomes translation invariant. Also,

as αR decreases, Y becomes more correlated in the cross-section and time dimensions. In both

cases, the DA algorithm (under Θ̃) becomes less efficient at estimating B̃ and the state vector

(Pitt and Shephard, 1999). As the convergence properties of a DA algorithm depend on the

data-generating parameter values (See Papaspiliopoulos et al., 2007, for a discussion), I com-

pute inefficiency factors on a coarse grid by setting (αF , αR) ∈ {0.7, 0.9, 0.95}×{0.01, 0.1, 0.5}.
Using (28-29), 101 artificial data samples were generated for each point of the grid. I impose the

restriction R = rI17 and I specify an inverse gamma distribution on r with shape parameter

equal to 2 and scale parameter equal to αR.

17Error specification has no material effect on numerical efficiency: imposing that R is equal to a diagonal

matrix produces qualitatively similar results with artificial data, which are not reported in this paper. This

alternative restriction is used for describing the numerical efficiency of the SPX-DA with actual data in Section

5.4.
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5.3. Simulation results

For αF = 0.9 and αR = 0.1, Table 2 reports the minimum, median, maximum and mean

inefficiency factors of each parameter element for the DA algorithm (columns 1 to 4) and for

the SPX-DA algorithm (columns 5 to 8). It also reports these statistics for the inefficiency

factors of the SPX-DA algorithm as a proportion of the those of the DA algorithm (columns 9

to 12). The DA algorithm is very inefficient at estimating B̃ and requires several hundred times

more iterations than an independent sampler for achieving the same precision. Estimation of

the state vector ζT is as inefficient as that of B̃, which is not surprising because they are related

by translation invariance. With respect to the estimation of the matrix of factor loading, the

picture is somewhat less dramatic on average but the DA algorithm is several hundred times

less efficient than an independent sampler for certain elements too. That the elements of the

second column of H̃ are estimated more precisely than those of the first is attributable to the

lower persistence of the second state variable. A similar pattern is observed for the estimation

of the matrix of auto-regressive coefficients. In contrast, estimation ofR is quite efficient, being

only a few times less efficient than an independent sampler. The DA algorithm estimates R

efficiently because this parameter element is drawn from p (R| ζ,y) when the parameter prior

is proportional to (19) and the conditional posterior is factorized as (20). Thus, it is isolated

from any inefficiency in the estimation of other parameter elements. Also, this density is

invariant under affine transformation of the state vector: p (R| ζ,y) = p (R|Gζ + L,y), for

all (L,G) ∈ L × G.

Inefficiency, as it is being quantified by (27), might therefore be influenced by the invariance

property of the likelihood function in a way that generalizes the results of Geweke (2007) for

finite mixture distributions, which are permutation invariant. Because the permutation group

is countable, inefficient normalization defines a multimodal parameter posterior. Depending on

the severity of the empirical underidentification problem, a standard DA algorithm could visit

certain lobes of the parameter posterior only infrequently or never at all. LSSMs are invariant

under the affine group, which is not countable. Because inefficient normalization does not nec-

essary defines a multimodal posterior, poor mixing over observationally equivalent parameter
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values is not always easily visible in LSSMs. In order to better characterize the relationship

between numerical efficiency and invariance, Table 2 also reports the inefficiency factors of two

additional invariant quantities. The first is the vector of one-step-ahead predictions for the

vector of observables, ŷT+1, which I define as18

ŷT+1 = B̃+ H̃F̃ζT . (30)

The second is the magnitude of the eigenvalues of the matrix of auto-regressive coefficients,

in descending order, which I denote by λ. Considering the inefficient estimation of certain

elements of the parameter vector, the DA algorithm is surprisingly efficient at computing pre-

dictions. It is only about 50 times less efficient than an independent sampler. A significant

component of the low numerical efficiency of the DA algorithm, as quantified by the inefficiency

factor of factor loadings for instance, could be attributable to poor mixing over almost ob-

servationally equivalent parameter values. This interpretation is confirmed by the inefficiency

factors of the eigenvalues of F̃.

For αF = 0.9 and αR = 0.1, the SPX-DA algorithm is almost as efficient as an independent

sampler for estimation every parameter element, with the notable exception of R, for which it

provides no material improvement (Table 2, columns 5 to 8). Predictions and eigenvalue are

estimated with impressive precision as well. As anticipated, the inefficiency factors of the DA

algorithm (under Θ̃) depend on the parameter values of the data generating process19. For

parameter elements of the observation equation (6), inefficiency increases with αF (Table 3,

Panels a, b and c). Inefficiency increases with αR for R, but decreases for B̃ and H̃. For the

matrix of autoregressive coefficients and its eigenvalues, inefficiency increases with αR when αF

is large but decreases when αF is small (Panels d and f). The inefficiency factors of predictions

18Computing the inefficiency factor of yT+1 = B̃+ H̃
(

F̃ζT + ṽT+1

)

+wT+1 would be misleading because

the innovations in the observation and state equations reduce the posterior sample’s autocorrelation.
19Reflection normalization is implemented as an accept-reject step in the DA algorithm. In all, 909 artificial

data samples were generated. For each sample, the rejection rate associated with reflection normalization was

identically equal to zero. Therefore, reflection normalization had no influence on the numerical efficiency of

the DA algorithm.
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(Panel e) follow a pattern opposite to that of R: they decrease as αR or αF increase. For every

quantity and parameter value considered, SPX-DA is at least as efficient as DA, and often

much more so (Table 3). Also, inefficiency factors fluctuate much less with the parameter

values of the data generating process, if at all. For instance, the inefficiency factors of B̃ and

R do not seem to vary with αF (Panels a and c). Those of F̃ do not vary with αR (Panel

d). Although the DA and SPX-DA algorithms estimate R equally precisely when αR are αF

small, the SPX-DA algorithm is more efficient when they are large.

5.4. Term structure data

The empirical results that follow pertain to the estimation of a LSSM with three state

variables for a panel of zero-coupon bond yields. I use the data of Joslin, Singleton, and Zhu

(2011), which was obtained by bootstrapping20 Constant Maturity Treasury yields assuming

constant forward rates between maturities. Seven maturities (6 months, and 1, 2, 3, 5, 7,

and 10 years) have been observed between January 1990 to December 2007, for a total of 216

monthly observations. Yields are measured in basis points. Correlation between interest rates

of various maturities is high and factor models are thus attractive for modeling interest rate

panels (Table 5). But serial correlations are equally high, which makes inference challenging.

Average inefficiency factors are reported in Table 6 when R is restricted to being a diagonal

matrix (Panel b) or proportional to an identity matrix (Panel a). They are consistent with

the main conclusions of the simulations experiments of Section 5.3:

1. The DA algorithm estimates invariant quantities (R, ŷT+1 and λ) more efficiently than

quantities that are not invariant (B̃, H̃, F̃ and ζT );

2. The SPX-DA is almost as efficient as an independent sampler for every parameter element

but R, for which it is only a few times less efficient.

20Bootstrapping is an iterative method for extracting zero-coupon bond rates from coupon-paying bond

yields. It has no relation to the resampling statistical procedure of the same name.
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DA SPX-DA DA / SPX-DA

min median max mean min median max mean min median max mean

Element (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

B̃1 290.4 443.7 488.5 436.2 0.6 1.0 1.4 1.0 312.6 451.4 700.4 453.8

B̃2 106.3 253.1 391.8 256.7 0.6 1.0 1.3 1.0 94.7 251.8 418.6 264.0

B̃3 300.9 453.4 489.4 447.7 0.6 1.0 1.4 1.0 325.6 460.2 737.4 468.0

B̃4 303.1 453.5 489.4 447.8 0.6 1.0 1.4 1.0 325.0 459.5 743.6 467.4

H̃1,1 61.4 106.0 218.2 108.1 0.9 1.4 2.1 1.4 34.7 77.7 175.6 80.2

H̃2,1 122.0 195.3 303.4 201.7 0.8 1.2 2.0 1.3 77.2 154.0 332.6 163.0

H̃3,1 155.2 241.3 370.6 247.2 0.7 1.1 2.1 1.2 122.6 215.0 383.6 221.1

H̃4,1 154.9 242.0 370.4 247.2 0.8 1.1 2.1 1.2 122.7 215.5 379.0 221.0

H̃2,2 26.9 54.9 93.9 56.0 0.8 1.2 1.9 1.2 22.4 46.3 84.3 46.7

H̃3,2 31.6 58.7 101.4 60.1 0.9 1.2 1.9 1.2 25.6 51.1 86.0 50.8

H̃4,2 31.5 58.9 102.2 60.1 0.7 1.2 1.6 1.2 25.6 50.3 85.3 51.0

R1,1 2.4 3.6 5.4 3.7 1.9 2.9 4.2 2.9 0.7 1.3 2.4 1.3

F̃1,1 7.8 40.7 351.7 63.7 0.6 1.1 1.5 1.1 6.3 38.2 368.9 61.6

F̃2,1 10.2 62.4 206.2 78.9 0.8 1.2 1.7 1.2 9.3 56.2 245.4 69.2

F̃1,2 2.9 8.2 72.1 11.8 0.7 1.1 1.6 1.1 2.0 8.1 57.6 10.8

F̃2,2 4.1 11.1 51.6 13.2 0.7 1.1 1.7 1.2 3.2 9.5 52.2 11.9

ζT,1 160.3 375.7 482.1 369.2 0.6 1.0 1.4 1.0 183.3 385.6 595.3 384.3

ζT,2 44.7 145.4 364.1 157.3 0.6 1.0 1.4 1.0 38.9 146.0 332.1 157.1

ŷT+1,1 4.7 31.7 148.4 36.2 0.6 1.0 1.4 1.0 5.9 32.7 122.0 36.9

ŷT+1,2 11.8 32.0 123.2 37.0 0.7 1.1 1.5 1.0 9.2 32.3 110.3 36.5

ŷT+1,3 12.1 61.0 158.3 65.2 0.7 1.0 1.4 1.0 10.2 63.0 170.3 66.1

ŷT+1,4 11.6 60.9 157.7 65.3 0.7 1.0 1.4 1.0 10.0 61.4 164.2 66.5

λ1 6.9 40.9 389.1 62.2 0.6 1.0 1.5 1.0 6.4 41.1 419.5 62.0

λ2 2.7 7.8 29.8 9.3 0.8 1.1 1.7 1.1 2.2 7.1 25.7 8.5

Table 2: Minimum, median, maximum and mean of the inefficiency factors of the DA algorithm (columns 1

to 4), of the inefficient factors of the SPX-DA algorithm (columns 5 to 8), and of the inefficiency factors of

the DA algorithm as a proportion of the inefficient factors of the SPX-DA algorithm (columns 9 to 12) for

101 artificial data samples of T = 200 observations generated from (28-29) with αF = 0.9 and αR = 0.1. R is

proportional to an identity matrix. Inefficiency factors are computed by (27).
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αR

αF
0.70 0.90 0.99

0.01 440.2 462.2 467.2

0.10 290.0 400.9 430.4

0.50 118.3 322.2 390.2

Panel a - B̃

αR

αF
0.70 0.90 0.99

0.01 305.3 355.2 393.9

0.10 79.8 136.7 231.3

0.50 27.5 59.1 150.0

Panel b - H̃

αR

αF
0.70 0.90 0.99

0.01 2.8 2.9 3.1

0.10 3.1 3.6 4.7

0.50 4.1 4.8 8.6

Panel c - R

αR

αF
0.70 0.90 0.99

0.01 16.7 30.3 46.5

0.10 9.8 30.6 70.0

0.50 7.3 28.8 76.8

Panel d - F̃

αR

αF
0.70 0.90 0.99

0.01 139.8 69.2 101.1

0.10 56.8 46.4 33.8

0.50 10.6 14.6 10.8

Panel e - ŷT+1

αR

αF
0.70 0.90 0.99

0.01 10.3 10.8 9.5

0.10 8.3 24.3 14.0

0.50 5.8 29.6 29.7

Panel f - λ

Table 3: Median inefficiency factors of the DA algorithm for 101 artificial data sets of 200 observations gen-

erated from (28-29) with (αF , αR) ∈ {0.7, 0.9, 0.99}× {0.01, 0.1, 0.5}. R is proportional to an identity matrix.

Inefficiency factors are computed by (27). The average over the elements of each parameter is reported.
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αR

αF
0.70 0.90 0.99

0.01 1.0 1.0 1.1

0.10 1.0 1.0 1.1

0.50 1.0 1.0 1.1

Panel a - B̃

αR

αF
0.70 0.90 0.99

0.01 1.0 1.0 1.1

0.10 1.1 1.2 1.4

0.50 1.9 2.1 2.5

Panel b - H̃

αR

αF
0.70 0.90 0.99

0.01 2.9 2.9 3.3

0.10 2.9 2.9 3.2

0.50 3.1 3.0 3.3

Panel c - R

αR

αF
0.70 0.90 0.99

0.01 1.0 1.0 1.1

0.10 1.1 1.1 1.3

0.50 2.1 1.8 2.0

Panel d - F̃

αR

αF
0.70 0.90 0.99

0.01 1.0 1.0 1.1

0.10 1.0 1.0 1.1

0.50 1.1 1.1 1.1

Panel e - ŷT+1

αR

αF
0.70 0.90 0.99

0.01 1.0 1.0 1.1

0.10 1.1 1.1 1.2

0.50 1.9 1.6 1.6

Panel f - λ

Table 4: Median inefficiency factors of the SPX-DA algorithm for 101 artificial data sets of 200 observations

generated from (28-29) with (αF , αR) ∈ {0.7, 0.9, 0.99}×{0.01, 0.1, 0.5}. R is proportional to an identity matrix.

Inefficiency factors are computed by (27). The average over the elements of each parameter is reported.
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y1 y2 y3 y4 y5 y6 y7

y1 1.000 - - - - - -

y2 0.994 1.000 - - - - -

y3 0.963 0.983 1.000 - - - -

y4 0.928 0.957 0.993 1.000 - - -

y5 0.840 0.879 0.946 0.977 1.000 - -

y6 0.774 0.818 0.901 0.944 0.992 1.000 -

y7 0.687 0.736 0.833 0.889 0.965 0.988 1.000

Serial 0.982 0.981 0.978 0.976 0.974 0.975 0.975

Table 5: First-order serial correlation and cross-correlations of zero-coupon bond rates.

DA SPX-DA

Element (1) (2)

B̃ 481.7 1.1

H̃ 344.8 1.9

R 8.6 2.7

F̃ 99.3 1.4

ζT 437.2 1.0

ŷT+1 5.5 1.1

λ 12.9 1.0

Panel a

DA SPX-DA

Element (1) (2)

B̃ 483.8 1.3

H̃ 399.5 2.0

R 8.4 5.8

F̃ 113.8 1.4

ζT 447.4 1.3

ŷT+1 11.7 1.3

λ 6.2 1.2

Panel b

Table 6: Term structure data. Mean inefficiency factors of the DA (column 1) and the SPX-DA (column 2)

algorithms. R is proportional to an identity matrix (Panel a) or is a diagonal matrix (Panel b). Inefficiency

factors are computed by (27).
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6. Almost invariant posteriors

I use artificial data for illustrating the influence of normalization on parameter inference

when the model is empirically underidentified. In particular, I show how Θ̃ can define an

almost invariant parameter posterior. Such a posterior has an irregular shape that the DA

algorithm does not always fully recover even after a fairly large number of iterations. I analyze

the empirical consequences of invariance under orthogonal transformation and translation in

two separate simulation experiments. The DA and SPX-DA algorithms are implemented as in

Section 5. They define different parameter posteriors because they integrate different priors.

The influence of prior specification is also examined in the present section.

6.1. Invariance under orthogonal transformation

In order to isolate the influence of invariance under orthogonal transformation on statistical

inference, the data generating process is chosen so that there is no empirical underidentification

difficulty associated with translation or scale invariance. As translation invariance can cause

empirical underidentification problems when that data is strongly persistent, the diagonal

elements of the matrix of autoregressive coefficients are set to relatively low values. Difficulties

associated to scale invariance are avoided by assuming that the number of state variables is

known. For this simulation experiment, the data is generated as

ζt+1 = 0+





0.4 0

0 0.8



 ζt + ṽt (31)

Yt = 0+











0 0

1 0

0 1











ζt +wt, (32)

where ṽt and wt are vectors of independent standard normal variables. Imposing (11-12) does

not break invariance under permutation and rotation: post-multiplying H̃1:2,1:2 = [ 0 0
1 0 ], by a

permutation or a rotation matrix matrix results in a lower triangular matrix. Permutation in-

variance interferes with reflection normalization under Θ̃ because imposing (13) is ineffective if
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Mode

Parameter 1 2 3 4 5 6

H̃











0 0

1 0

0 1





















0 0

−1 0

0 1





















0 0

1 0

0 −1





















0 0

−1 0

0 −1





















0 0

0 1

1 0





















0 0

0 1

−1 0











F̃





0.5 0

0 0.9









0.5 0

0 0.9









0.5 0

0 0.9









0.5 0

0 0.9









0.9 0

0 0.5









0.9 0

0 0.5





Table 7: The six pairs of parameter values (which I refer to as modes of the parameter posterior) that are

observationally equivalent to the system (31-31).

the diagonal elements of H̃1:2,1:2 are equal to zero. Thus, permutation and reflection invariance

implies that there are six observationally equivalent parameter values. For future reference,

they are described and labeled in Table 7. In finite samples, this observational equivalence

does not hold exactly because the first row of H̃ will not be identically zero, but the parameter

posterior could be multimodal and almost invariant under rotation. For clarity of exposition

however, I will refer to the modes of the parameter posterior through the intermediary of the

parameter values reported in Table 7.

By construction, the SPX-DA algorithms explores every lobe of the parameter posterior21.

The DA algorithm does not always do so. Figure 1 (Panels a and b) shows the posterior

density22 of the diagonal elements of F̃ for one artificial data set of 200 observations, based

on 500, 000 iterations after a burn-in of 5, 000 iterations. The marginal posterior densities

recovered by the DA (Panel a) and the SPX-DA (Panel b) algorithms have surprisingly different

shapes. The contour plots of the joint densities (Panels c and d), however, show that they

21Matrix decomposition algorithms must implemented in order to randomly select one element of their

solution set. For instance, there are K! solutions to the QR decomposition of an invertible K×K matrix.
22Joint densities are computed using the kernel density estimator proposed by Botev, Grotowski, and Kroese

(2010). For consistency, marginal densities are computed by numerical integration of joint densities.
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Figure 1: Posterior marginal (Panels a and b) and joint (Panels c and d) densities of F̃1,1 (solid blue line) and

F̃2,2 (dashed green line). Panels a and c correspond to the posterior sample from the DA Algorithm 1. Panels

b and d correspond to the sample from the SPX-DA Algorithm 3.
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Figure 2: Posterior marginal (Panels a and b) and joint (Panels c and d) densities of H1,1 (solid blue line) and

H2,2 (dashed green line) under Θ̃. Panels a and c correspond to the posterior sample from the DA Algorithm 1.

Panels b and d correspond to the sample from the SPX-DA Algorithm 3.

are characterized by the same modes but that the algorithms do not visit them with the same

frequency. In particular, the DA algorithm visits modes 5 or 6 (or both) more often than the

SPX-DA algorithm does.

The posterior distribution of other parameter elements is irregular as well. Figure 2 shows

the posterior distribution of H̃1,1 and H̃2,2, the elements upon which reflection normalization

rests under Θ̃. Because the marginal densities are not negligible at zero, imposing H̃1,1 > 0

and H̃2,2 > 0 does not break reflection invariance efficiently. The contour plots (Panels c and

d) confirm that the DA algorithm spends more time around mode 5 or 6 than the SPX-DA

algorithm does. In order to distinguish between modes 5 and 6, Figure 3 shows the posterior of

H̃3,1 and H̃2,2 and reveals that the DA algorithm never visits mode 5. Figure 4 (Panels c and
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Figure 3: Posterior marginal (Panels a and b) and joint (Panels c and d) densities of H̃3,1 (solid blue line) and

H̃2,2 (dashed green line). Panels a and c correspond to the posterior sample from the DA Algorithm 1. Panels

b end d correspond to the sample from the SPX-DA Algorithm 3.
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Figure 4: Posterior marginal (Panels a and b) and joint (Panels c and d) densities of H̃2,1 (solid blue line) and

H̃2,2 (dashed green line). Panels a and c correspond to the posterior sample from the DA Algorithm 1. Panels

b and d correspond to the sample from the SPX-DA Algorithm 3.
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Figure 5: Posterior marginal (Panels a and b) and joint (Panels c and d) densities of H̃2,1 (solid blue line) and

H̃3,2 (dashed green line). Panels a and c correspond to the posterior sample from the DA Algorithm 1. Panels

b and d correspond to the sample from the SPX-DA Algorithm 3.
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d) shows that the joint posterior of
(

H̃2,1, H̃2,2

)

is almost rotation invariant. The posterior

has a circular shape due to inefficient breaking of rotation invariance. Both algorithms spend

more time around modes 1 or 3 than around other modes. Finally, the DA algorithm never

visits modes 2 and 3 (Figure 5, Panels c and d). In sum, the DA algorithm switches between

mode 1 and mode 4, visiting mode 6 in the transition, but never visits modes 2, 3 and 5.

For this artificial data set, Θ̃ defines a parameter posterior with an irregular shape, which

complicates communication of empirical results about certain parameters. Reporting parame-

ter point estimators would be inadequate for must purposes for instance. Breaking invariance

under permutation and reflection would be more effective if the elements of the factor load-

ings matrix were uncorrelated a posteriori. When the parameter prior is proportional to (17),

Cov [H|R, ξ,y] is a diagonal matrix if both R and Σ are. I thus break rotation invariance by

imposing (14-15). Under this normalization, the lobes of the joint posterior of (F1,1,F2,2) are

well separated and imposing F1,1 > F2,2 efficiently breaks permutation invariance. In addition,

the marginal posterior density of H3,1 and H2,2 attribute negligible probability to neighbor-

hoods of zero and imposing H3,1 > 0 and H2,2 > 0 efficiently breaks reflection invariance. For

future reference, I denote this normalization by

ΘO = {θ ∈ Θ|Σ = I;Q ∈ D;F1,1 > F2,2;H3,1 > 0;H2,2 > 0} . (33)

I operationalize normalization by postprocessing the posterior samples. For the diagonal ele-

ments of F, the DA and SPX-DA algorithms define very similar parameter posteriors under

(33). The marginal posterior densities (Figure 6, Panels a and b) are unimodal and have a reg-

ular shape. If the investigator wanted to communicate empirical results about the persistence

of the state vector, this normalization would serve him well.

As implemented in this paper, the DA and SPX-DA algorithm define different parameter

posteriors because they integrate different priors. For the diagonal elements of F, the difference

is relatively small (Figure 6, Panels a and b) but it is consistent with the observation made

in Section 4.2: the modes of the marginal posteriors defined that the DA algorithm are larger
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Figure 6: Posterior marginal densities of the diagonal elements of F and of the elements of H recovered by the

DA (solid blue line) and SPX-DA (dashed green line) algorithms under normalization (33).
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Figure 7: Marginal densities of the top left element of HU when U is distributed ac-

cording to the Haar measure on the orthogonal group and H1,1 is uniformly distributed
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]

(H1,2 = 0) (solid blue line) and (H1,1,H1,2) is uniformly distributed on
[

− 1

2
, 1

2

]2
(dashed green line).

than those defined by the SPX-DA algorithm23. The influence of prior specification on the

elements on the first row (first K − 1 rows, when K > 2) of H is more apparent (Panels c

and d). This is because specifying a flat prior on the elements of a lower triangular matrix is

not equivalent to specifying a flat prior on the elements of a square matrix (equivalent priors

must satisfy equation (21)). In order to better understand the influence of prior specification,

suppose that a uniform prior on the interval
[

−1
2
, 1

2

]

is specified instead of a flat prior and

consider the distribution of the top left element of HU when U is distributed according to the

Haar measure on the orthogonal group. If the first K×K block of H is lower triangular, the

density of the top left element of HU has a sharp spike at zero (Figure 7, solid blue line). In

contrast, the density is not so different from that of a uniform random variable if the first K×K
block of H is a square matrix (Figure 7, dashed green line). Notice that the difference between

the marginal posterior of the elements of the second and third rows is not material (Figure 6,

Panels e to h), which confirms that the observed differences in other marginal posteriors are

indeed due to prior specification.

23The influence of prior specification on the posterior of the diagonal elements of F is explored further in

Section 6.2.
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Figure 8: Posterior marginal densities of predictions recovered by the DA (solid blue line) and SPX-DA (dashed

green line) algorithms under Θ̃. Predictions are defined by (30).

That the DA and SPX-DA algorithms recover so similar parameter posteriors under (33)

is somewhat puzzling for it suggests that the DA algorithm fully captures the informational

content of the parameter posterior in spite of its failure to explore every lobe. Geweke (2007)

argues that efficiently exploring every lobes of a permutation invariant posterior distribution

is not necessary for the posterior sampler to fully capture its informational content. He states

that “Simple MCMC works” unless “there are mixing problems beyond those arising from

permutation invariance.” Because each lobe contains the same information, exploring any

single lobe is sufficient. Heuristically, not visiting observationally equivalent parameter values

at the right frequency is inconsequential. The posterior densities of predictions under Θ̃

recovered by the DA (Figure 8, solid blue line) and SPX-DA (dashed green line) algorithms

are very similar. This suggests that not visiting almost observationally equivalent parameter

values at the right frequency is almost inconsequential.

6.2. Invariance under translation

In order to better understand the influence of translation invariance on statistical inference,

the data generating process is chosen so that there is no underidentification difficulty associated

with invariance under scaling and orthogonal transformations. The data is generated according
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to (28-29) with K = N = 1, T = 200, αF = 0.99 and αR = 1. There is no permutation or

rotation invariance in a one-factor model. For the artificial data that I analyze in this section24,

the posterior distribution of the factor loading is unimodal and attributes negligible probability

to neighborhoods of zero so there is no empirical underidentification difficulty associated with

reflection and scale invariance. Breaking translation invariance by imposing (10) performs

poorly on the parameter subspace on which I − F̃ is close to being singular. In this simulation

exercise, F̃ = 0.99 is a sufficiently high value for illustrating the implications of translation

empirical underidentification.

Because the translation group is not compact, a translation invariant density function is

improper. Inefficiently breaking translation invariance could therefore result in an almost

improper parameter posterior. If the mathematical definition of impropriety is unambiguous,

anticipating the observable characteristics of a sample from an almost improper distribution

proves challenging. It requires defining some sort of sequence of which an improper density is

the limit, in a way that gives meaning to being close to impropriety. One such sequence is the

order of the lowest central moment that is not finite. For an improper density, moments of

order higher than or equal to zero are not finite. Arguably, an almost improper density should

not have a finite variance, and perhaps not a finite mean either.

Figure 9 shows the value of B̃ for every 1000th iteration of the DA algorithm (Panel a)

and a kernel estimation of the posterior density (Panel c, solid blue line). Even after 1,000,000

iterations, the DA algorithm failed to recover the marginal posterior of B̃ with a precision that

would allow one to draw any meaningful conclusion about its shape. In contrast, the SPX-DA

algorithm shows no particular sign of poor mixing. Panel b of Figure 9 shows the value of B̃

for every 1000th iteration of the SPX-DA algorithm, truncated to the [−50, 50] interval, thus

excluding 3,2% of the sample. The DA algorithm never explores outside this interval. The

posterior density recovered by the SPX-DA algorithm has very fat tails, which are difficult to

estimate. Iterations for which the value of B̃ lies outside the [−50, 50] interval are excluded

24Qualitatively similar results were obtained with other artificial data sets.
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as well in the kernel estimate shown in Panel c (dashed green line). The sample posterior

standard deviation and excess kurtosis are respectively 1,295 and 299,639. The largest value is

932,334. Assuming that the sample is t-distributed, the maximum-likelihood estimate of the

number of degrees of freedom is ν = 1.23. A t-distributed random variable with 1 < ν ≤ 2

as infinite variance and undefined higher-order moments. Its mean is undefined if ν ≤ 1.

An alternative way of assessing whether the variance is finite is analyzing the distribution of

the sample mean. I divided the posterior sample randomly into 1,000 sub-samples of 1,000

observations. The distribution of the sample mean is undoubtedly not normal: assuming the

sample mean is t-distributed, the maximum-likelihood estimate of the number of degrees of

freedom is 1.03. These observations suggest that the parameter posterior recovered by the

SPX-DA algorithm might not have a finite mean, which is arguably as close to being improper

as a proper distribution can be.

As in the previous simulation exercises, the DA and SPX-DA algorithms define different

parameter posteriors. But the influence of the prior specification is more transparent in the

present one. Specifying a flat prior proportional to (19) attributes a higher probability to

neighbourhoods of F̃ = I than specifying an invariant prior proportional to (17). When the

observables are highly persistent and the sample size is relatively small, the DA and SPX-

DA algorithms can define quite different parameter posteriors. Panel d of Figure 9 shows a

kernel estimation of the posterior of F̃ recovered by the DA (solid blue line) and SPX-DA

algorithm (dashed green line). In contrast to the posterior of B̃, the DA algorithm has no

difficulty recovering the posterior of F̃. But it defines a parameter posterior with a higher mode

(0.998) than that defined by the SPX-DA algorithm (0.988), which is equal to the maximum-

likelihood estimate. For this reason, the invariant prior integrated in the SPX-DA algorithm

is arguably more compatible with the common notion of a noninformative prior than the flat

prior integrated in the DA algorithm.
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Figure 9: Translation empirical underidentification. Panels a and b respectively show the value of B̃ for every

1000th iteration of the DA and SPX-DA algorithm. The artificial data is generated as described in section 6.2.

Also shown is a kernel estimation of the marginal posterior of B̃ (Panel c) and F̃ (Panel d) recovered by the

DA algorithm (solid blue line) and the SPX-DA algorithm (dashed green line).
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7. Discussion

Empirical work in econometrics often begins with specification of a structural model in-

volving a parameter that has more elements than can be estimated because they are not

identified. Identification is usually obtained by restricting the support of the parameter prior

density to a particular subspace in which the parameter is identified. When a DA algorithm

is used for computing the parameter posterior, operationalizing normalization in this man-

ner is computationally inefficient. The main contribution of this paper is a novel posterior

sampler for state-space models. It exploits the invariance property of the model’s likelihood

function for simplifying implementation and improving numerical efficiency of posterior sam-

pling. In particular, the SPX-DA algorithm outperforms a standard DA algorithm under

any parameterization that can be expressed as a restriction of the unnormalized parameter

space induced by the invariance group. From a practitioner’s perspective, SPX-DA provides

substantial computational efficiency gains with only minor modifications to a standard DA

algorithm. In addition, the SPX-DA’s simplicity and efficiency do not depend on normaliza-

tion choice. In fact, operationalizing normalization as a mapping allows the investigator to

consider parameterizations that would be impracticable with a standard DA algorithm. Such

parameterizations could prove useful in empirical work when standard normalizations define

parameter posteriors with undesirable properties.

One apparent drawback of SPX-DA is that the parameter posterior it defines is generally

different from that defined by a standard DA algorithm, unless the Jacobian of the transforma-

tion that operationalizes normalization is identically equal to one. While both approaches are

inferentially valid, they define different posteriors because the integrate, implicitly, different

priors. With respect to the parameter posteriors that they define, comparing the SPX-DA

algorithm to a standard DA algorithm therefore amounts to comparing the prior that they

typically integrate. Another contribution of this paper is proposing parameter priors that do

not express prior beliefs over the relative plausibility of observationally equivalent parame-

ter values. With such priors the invariance property of the likelihood function carries over
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to the parameter posterior and predictive densities. For a one-factor LSSM, the invariant

prior (23) ensures that the mode of the autoregression coefficient’s posterior is equal to its

maximum-likelihood estimate. But the empirical performance of invariant priors for parame-

ter estimation, forecasting and model selection merits further examination.

I have provided only a few examples of invariant prior densities, which are noninformative

about dimensions that have no substantive interpretation but, necessarily, informative about

other dimensions. In certain situations, an invariant prior that is more informative about

invariant dimensions might be desirable. Invariant quantities are arguably the only quantities

that one can reasonably have prior beliefs about. For instance, the investigator might have

prior beliefs about the magnitude of the matrix of autoregression coefficients’ largest eigen-

value, say λmax. Clearly, a prior proportional to p (R) p (λmax) det (Q)−
1−N+(K+1)

2 satisfies (16)

for any marginal density p (λmax). Another invariant quantity is the proportion of the observ-

ables’ variance that is attributable to the state vector, i.e. the diagonal elements of HΣH′

as a proportion of those of HΣH′ + R. Thus, invariant priors should not be assimilated to

noninformative priors and can be used when prior information is available.

Autoregressive-moving-average (ARMA) models have LSSM representations25 that are not

invariant under the affine group because certain parameter elements are restricted to being

equal to zero or one. However, these models are not immune to an empirical underidentifi-

cation difficulty that is known as root cancelation or redundant parameter. It is well known

(Box and Jenkins, 1976) that parameter point estimators become unreliable when an autore-

gressive root is close to a moving-average root and this difficulty is the object ongoing research.

Kleibergen and Hoek (2000) propose priors for a reparameterization of ARMA models that pe-

nalizes regions of the parameter space where roots are close to canceling out. Alternatively,

Cogley and Startz (2013) propose a framework for attributing a specified probability to the

parameter subspace where roots cancel out. Describing the invariance property of ARMA

25See Aoki (1987), Brockwell and Davis (1991) and Hamilton (1994) for LSSM representations of ARMA

models.
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models and its relationship to its LSSM representations would possibly help finding other so-

lutions to the near root cancellation problem. The tools that I present in this paper could also

help addressing empirical underidentification difficulties in the mixtures models, structural

vector autoregressions, and cointegration models considered by Hamilton, Waggoner, and Zha

(2007).

Measuring the numerical efficiency of a posterior sampler is more complicated than is

commonly appreciated. An essential first step in this assessment is being precise about the

inference objective. Efficiency cannot be defined in the abstract. A standard DA algorithm

is surprisingly efficient for computing predictions in LSSMs. This contrasts with extremely

inefficient computation of certain parameter posteriors. Although the high autocorrelation of

the parameter posterior sample generated by a standard DA algorithm suggests poor mixing

properties, simulation results indicate that it reliably recovers the informational content of the

parameter posterior after a reasonable number of iterations. Heuristically, slow exploration of

almost observationally equivalent parameter values is almost inconsequential. One implication

of this observation is that efficiency gains brought by a particular algorithm for computing the

parameter posterior do not necessarily translate into more efficient computation of predictive

densities. From that perspective, relating the numerical efficiency of a MCMC sampler to the

inefficiency factors of its parameter could be misleading when parameter estimation is not the

inference objective.
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Frühwirth-Schnatter, S., Lopes, H. F., 2010. Parsimonious Bayesian factor analysis when the

number of factors is unknown, Technical report, University of Chicago, Booth School of

Business.

54

http://dx.doi.org/10.2307/2171740
http://dx.doi.org/10.1057/9780230226203.0762
http://www.jstor.org/stable/4153172
http://www.jstor.org/stable/2646650
http://dx.doi.org/10.1111/j.1467-9892.1994.tb00184.x
http://www.jstor.org/stable/2670359
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Appendix A. The identification principle

Because there are many ways to normalizing a model, it is natural to ask whether certain

normalizations define parameter posteriors with more desirable finite-sample properties than

alternatives. In the following discussion, unimodal, symmetric and low kurtosis parameter

posterior and parameter estimator sampling distributions are assumed to be desirable. I will

say that a distribution with these attributes is regular.

Because empirical underidentification difficulties arise when the model is not globally iden-

tified, Hamilton et al. (2007) propose an identification principle26 as a general guideline for

the choice of normalization. In this appendix, I briefly describe their innovative approach

(which they illustrate with numerous examples) and I generalize some of its elements. This

description is presented as four conditions that normalization should satisfy. I also provide

examples for which the approach falls short of providing a unique normalization or ensuring

that the parameter posterior has a regular shape.

One could consider normalizations of arbitrary form, but I restrict the following discussion

to intersections of half-spaces and hyperplanes,

ΘN =
I
⋂

i=1

{

θ ∈ Θ
∣

∣ g⊤
i θ ≥ 0

}

∩
J
⋂

j=1

{

θ ∈ Θ
∣

∣h⊤
j θ = τj

}

,

for some real scalar τ1, . . . , τJ and sets of conformable linearly independent real vectors {g1, . . . , gI}
and {h1, . . . ,hJ}. Such normalizations impose I + J identifying restrictions. Half-spaces are

useful for normalizing countable groups of transformations while hyperplanes can normalize

uncountable groups of transformations. For example, one would break invariance under a

group of (I+1)! permutations with a normalization consisting in the intersection of I half-

spaces. In contrast, the intersection of J hyperplanes would break invariance under a group

26Andrews and Cheng (2012) implicitly consider a similar notion by introducing a canonical parametrization

under which the parameter vector is partitioned into three subvectors, i.e. θ = (θ1, θ2, θ3), in such a manner

that θ3 is identified if and only if θ1 6= 0, θ2 is not related to the identification of θ3, and θ1 and θ2 are always

identified. Unfortunately, LSSMs cannot be parameterized in this manner.
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of transformations that is equinumerous to ℜJ . Considering intersections of half-spaces and

hyperplanes is not as restrictive as it might seem. In particular, one can specify half-spaces

and hyperplanes in any space that is homeomorphic to Θ (Hobert et al., 1997).

IP1 - Convexity

Multimodality issues are more likely if the normalization is not convex. A minimal, if

perhaps trivial, criterion is thus that a normalization should be convex. As intersections of

half-spaces and hyperplanes are convex, a normalization consisting in intersections of half-

spaces and hyperplanes satisfies this criterion.

IP2 - The boundary of an half-space that break invariance under a countable group

Hamilton, Waggoner, and Zha (2007) advise that “... the boundaries of [ΘN ] should corre-

spond with the loci in [Θ] along which the [model] is locally unidentified or the log likelihood

diverges to −∞.”. The expression “corresponds to” is not technically precise. In the light of

the next example, conditions on the boundaries of normalizations should more precisely be

expressed as follows, which I will refer to as condition IP2:

The hyperplane defining the half-space
{

θ ∈ Θ
∣

∣ g⊤θ ≥ 0
}

should either (a) include the pa-

rameter subspace on which the model is locally unidentified or (b) be included in the parameter

subspace on which the log likelihood function diverges to −∞.

Example 1. Consider the location-and-scale mixture of two normal distributions

l (µ1, µ2, π, σ1, σ2|y) = πφ (y|µ1, σ1) + (1− π)φ (y|µ2, σ2) .

The parameter subspace on which the model is locally unidentified is

Θu = {θ ∈ Θ|µ1 = µ2} ∩ {θ ∈ Θ|σ1 = σ2}

and the log likelihood diverges to −∞ as θ gets closer to

Θ−∞ = {θ ∈ Θ|σ1 = 0} ∪ {θ ∈ Θ|σ2 = 0} .
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Condition IP2 rules out identifying restrictions based on π such as

Θπ = {θ ∈ Θ|π ≥ 0.5}

because the boundary of Θπ does not include Θu. Intuitively, this normalization would perform

poorly if the data came from a mixture distribution with π = 0.5 or with θ ∈ Θu, in which case

π is not identified.

Condition IP2 also rules out identifying restrictions like

Θσ∗

= {θ ∈ Θ|σ1 ≥ 0, σ2 ∈ (−∞,−2) ∪ [0, 2]}

because the boundary of Θσ∗

is not included in Θ−∞. However, condition IP2 does not yield a

unique solution as it is satisfied by the normalizations

Θµσα = {θ ∈ Θ|αµ (µ1 − µ2) + ασ (σ1 − σ2) ≥ 0}

for (αµ, ασ) ∈ ℜ2. Moreover, none of these normalizations ensures unimodality because the

model is permutation invariant on the normalizations’ boundary. For instance, the special case

Θµ = {θ ∈ Θ|µ1 ≥ µ2} would perform poorly if the data came from a mixture distribution with

µ1 = µ2 and the posterior distribution of σ1 and σ2 would be multimodal if σ1 6= σ2
27. �

In some models, condition IP2 yields a unique normalization, which provides global iden-

tification on its interior and ensures unimodal distributions. In slightly more general models

(e.g. example 1), it is less straightforward to apply, as it may yield uncountably many normal-

izations, none of which ensures unimodal distributions because the model is invariant under a

countable group of transformations on the normalization’s boundary.

IP3 - Local identification at all interior points

Hamilton, Waggoner, and Zha (2007) suggest that specifying conditions on the hyperplane

defining the boundary of a half-space ensures “that the model is locally identified at all interior

points”. This is not the case, however, because specifying the boundary of a half-space does

27See Geweke (2007) for an empirical illustration.
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not uniquely defines that half-space: there are two halves. As the following example illustrates,

this lack of uniqueness can be a problem when the invariance group contains more that two

transformations.

Example 2. Consider the scale mixture of three normal distributions

l (µ, π1, π2, σ1, σ2, σ3|y) = π1φ (y|µ, σ1) + π2φ (y|µ, σ2) + (1− π1 − π2)φ (y|µ, σ3) .

The parameter subspace on which the model is locally unidentified is

Θu = {θ ∈ Θ| σ1 = σ2} ∪ {θ ∈ Θ|σ1 = σ3} ∪ {θ ∈ Θ|σ2 = σ3} .

Normalizations

Θσa = {θ ∈ Θ|σ1 ≥ σ2, σ1 ≥ σ3} ,

Θσb = {θ ∈ Θ|σ1 ≥ σ2, σ1 ≤ σ3} ,

and Θσc = {θ ∈ Θ|σ1 ≥ σ2, σ2 ≥ σ3}

satisfy condition IP2, but only Θσb and Θσc ensure local identification at all interior points:

the model is locally unidentified on {θ ∈ Θ|σ2 = σ3} ⊂ interior (Θσa). �

Because condition IP2 does not imply local identification at all interior points, the latter

condition must be verified separately.

IP4 - Commutativity of mapping composition

When a model is invariant under several groups of transformations and normalization is op-

erationalized as a mapping, this mapping is obtained sequentially by composing the mappings

that operationalize each normalization. Certain normalizations can only be operationalized

by composing mappings in a particular order. For example, if permutation invariance were

to be broken by sorting the elements of a parameter vector in ascending order and reflection

invariance by ensuring that the elements of that vector be positive, reflection invariance must

be broken before permutation invariance. For certain other normalizations, composition order

has no consequence.
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Example 3 (Example 1, continued). The model is permutation invariant, but it is also reflec-

tion invariant because

l (µ1, µ2, π, σ1, σ2|y) = l (µ1, µ2, π,−σ1, σ2|y)

= l (µ1, µ2, π, σ1,−σ2|y)

= l (µ1, µ2, π,−σ1,−σ2|y) .

Consider a parameter value (σ1, σ2) = (−1,−2). Operationalizing Θσ1≥0,σ2≥0,σ1≥σ2 as a map-

ping and applying permutation normalization first would result in the parameter value

(−1,−2) → (−2,−1) → (2, 1) /∈ Θσ1≥0,σ2≥0,σ1≥σ2 .

In contrast, applying reflection normalization first results in

(−1,−2) → (1, 2) → (1, 2) ∈ Θσ1≥0,σ2≥0,σ1≥σ2 .

�

This property is more than an implementation detail. For if mappings must be composed

in a particular order and the first normalization that is operationalized fails empirically, this

failure might propagate to the following normalizations. Normalizations that can be opera-

tionalized by composing mappings in any order are more robust to empirical underidentification

and thus preferable.
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